1. Writing a Competency-Based Exam

2. Chapter 1: About CAMRT

Welcome to the Canadian Association of Medical Radiation Technologists’ (CAMRT) online module on writing a competency-based exam!

The purpose and objectives of this learning module are to provide information about:

- CAMRT
- becoming certified to work in Canada
- the meaning of competency-based education and testing
- the development of the national certification exam
- tips and strategies for writing the exam

3. About CAMRT

The CAMRT is Canada’s national professional association and certifying body for the four disciplines of medical radiation technology: radiological technology, magnetic resonance, nuclear medicine technology and radiation therapy.

4. History

CAMRT was founded in 1942 by a coalition of provincial associations.

The first national certification exams were written in:

- 1947 in the discipline of radiological technology;
- 1958 for radiation therapy;
- 1968 for nuclear medicine and;
- 1996 for magnetic resonance.

The CAMRT is the national body in a partnership with ten provincial associations who share a common membership of approximately 12,000.

5. Supporting our members

As the national professional association, CAMRT supports and advocates for its membership by providing:

- professional liability insurance
- continuing professional development
- best practice guidelines
- advocacy for the profession
- other member services
6. **CAMRT – A certifying body**

As a certifying body, the CAMRT

- develops **entry-to-practice competency profiles** for each of the four disciplines
- develops and administers **national certification exams** for each of the four disciplines.

The medical radiation technology organizations in all Canadian provinces, with the exception of Quebec, recognize the CAMRT certification exam as the requirement for entry-to-practice. There is reciprocity between CAMRT and the regulatory authority for the province of Quebec, recognizing each other’s certification.

7. **Chapter 2: Working in Canada**

To work in the medical radiation technology disciplines in Canada, you must pass an **entry-to-practice certification exam**.

Graduates of a Canadian accredited program are eligible to write the exam.

Internationally educated medical radiation technologists (IEMRTs) **must first apply to have their credentials assessed**. Read about the assessment on the [CAMRT website](#). Following a successful assessment, the IEMRT is eligible to apply to write the exam.

8. **Becoming certified in Canada**

Exam candidates are allowed an initial write and 3 rewrites for a total of **4** attempts at writing the exam within an established **five-year** timeframe.

The CAMRT entry-to-practice certification exam is a **185 multiple choice question exam** that is written over **4 hours in one sitting**. There are many writing centers in Canada, and candidates can select the exam center of their choice when they apply to write the exam.

Exam sittings are scheduled 3 times in a year: January, May and September.
See the [exam schedule](#) to find out more.

9. **Chapter 3: Competency-based education**

The CAMRT exams are developed using documents called **competency profiles**. There is a competency profile for each discipline.

Click on the appropriate icon below to view the competency profile for your discipline.

- [Magnetic Resonance](#)
- [Nuclear Medicine](#)
- [Radiation Therapy](#)
- [Radiological Technology](#)
10. The competency profile

The competency profile is a document that lists the outcomes or competencies that a technologist must have at the entry-to-practice level for the profession. These outcomes or competencies are required in order to provide ethical, safe and effective care in the delivery of imaging and therapy services to the patient and other healthcare colleagues.

The competency profile paints a picture of how you should practice. It tells what tasks you must be able to do at entry to the profession.

11. Reading the profiles

Learning how to do these tasks, and achieve the competency needed for safe and effective practice requires knowledge, skill and judgment that is learned in an education program.

The competencies required are listed in the CAMRT competency profiles. Click on each of the arrows below for information on how to read a competency profile.

CL

There are three competency levels (CL)

- HIGH (H)
- MEDIUM (M)
- LOW (L)

More weighting will be placed on the development and use of questions associated with a HIGH level competency as opposed to a MEDIUM or LOW rated level competency.

PE

Rapid changes in technology and practice, specialization and varying regional differences make it difficult for all programs to assess student competence in exactly the same way and setting.

Therefore, the competency profile provides guidance on performance environments (PE) for assessment of a competency. The two performance environments are:

- clinical (C)
- simulated learning experience (S)

B

This column displays the competency statement. Not all competencies will be tested on the CAMRT certification exam.

The EXAMINABLE COMPETENCIES are those competencies that have a competency level (CL) indicated in the column to the right.
12. Curriculum: theory and practice

Education programs use the profiles to develop curriculum. Curriculum is both the theory that is taught and assessed in a classroom setting and the skills and application of theory that are taught and evaluated during the clinical part of an education program. The education programs for the disciplines of radiological technology, nuclear medicine technology, magnetic resonance and radiation therapy have two components:

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>The theory is taught and examined.</td>
<td>The competency associated with the application of the knowledge and skill is evaluated.</td>
</tr>
</tbody>
</table>

13. Outcomes of learning

It is the application of knowledge and skill and the technologist’s behaviour in practice that determine competency in the workplace.

This is called competency-based education because it focuses on the outcomes of learning. This type of learning addresses what the students are expected to do, rather than what they are expected to learn about.

With the rapid change in technology and practice, competency-based learning that meets the needs of the workplace is the best method for educating in the disciplines of medical radiation technology. It allows education programs to prepare students for the needs of employment.

14. Skill and competency

To further clarify the concept of competency-based learning, let’s use the example of the ability or technique of communication. The ability to communicate is a skill that we all have. However, it is the ability to communicate effectively to ensure understanding by the person to whom we are speaking that demonstrates competency in the skill of communication.

Skill - ability to communicate

Competency - ability to communicate effectively to ensure understanding

15. Learning environments

The goal of a Canadian accredited competency-based education program is to have students achieve the competencies that are listed in the CAMRT competency profiles. Achievement of competencies is mostly assessed in a clinical environment, where knowledge, skill and judgement are used to make decisions in a wide range of practice areas.

In Canada, upon graduation from a program, the student has access to the national certification exam.
16. Competency-based exams

The CAMRT certification exam is a national competency-based exam for entry to practice in one of the disciplines represented by CAMRT. The exam is meant to assess how you would perform in the workplace. This type of exam is called a competency-based exam.

Exam questions match the learning outcomes or competencies identified in the profile. They are developed from the perspective of applying knowledge, skills and judgement in the workplace to make practice decisions, as opposed to asking questions on content that was learned in the classroom or from textbooks.

17. Using your knowledge

For example, students in all disciplines must study anatomy and physiology. You learn this in the classroom and from textbooks, and your knowledge is tested at the beginning of your education program. However, as you proceed through the program, what is more important is how you use your knowledge of anatomy and physiology in the care of the patient and in the performance of imaging and therapy procedures.

18. Exam blueprints

The purpose of the exam is to provide a consistent and fair assessment of competency for entry into the profession for all those wishing to practice.

Given that the expected performance has been identified in the competency profiles, the profiles are used to produce a blueprint for exam development. Click on the appropriate icon below to view the CAMRT exam blueprint for your discipline.

- Magnetic Resonance
- Nuclear Medicine
- Radiation Therapy
- Radiological Technology

19. Sample questions

While many IEMRTs are more familiar with knowledge-based questions, the CAMRT entry-to-practice exam asks competency-based questions.

The following sample questions have been developed to help show the difference between a knowledge-based question and a competency-based question.

Click on the appropriate icon below to view the sample questions for your discipline.

- Magnetic Resonance
- Nuclear Medicine
- Radiation Therapy
- Radiological Technology
Magnetic Resonance
Sample 1
PATIENT CARE

<table>
<thead>
<tr>
<th>Knowledge Based</th>
<th>Competency Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>What does an eGFR of less than 30 mL/min/1.73m² indicate?</td>
<td>A patient scheduled for a liver scan presents with an eGFR of 15mL/min/1.73m². How would the MR technologist proceed prior to scanning?</td>
</tr>
<tr>
<td>a. Normal renal function</td>
<td>a. Administer the gadolinium as prescribed by the protocol</td>
</tr>
<tr>
<td>b. Hypertension</td>
<td>b. Administer the gadolinium with a reduced dosage</td>
</tr>
<tr>
<td>c. Reduced kidney function*</td>
<td>c. Consult with the Radiologist and referring physician</td>
</tr>
<tr>
<td>d. Polycystic kidney disease</td>
<td>d. Consult with the Radiologist, referring physician & patient *</td>
</tr>
</tbody>
</table>

Sample 2
PATIENT CARE

<table>
<thead>
<tr>
<th>Knowledge Based</th>
<th>Competency Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which of the following is a primary biological effect of the RF fields?</td>
<td>Which of the following pulse sequences would reduce the biological effects of RF fields?</td>
</tr>
<tr>
<td>a. Induced voltages</td>
<td>a. Gradient echo with a flip angle of 850</td>
</tr>
<tr>
<td>b. Specific absorption rate</td>
<td>b. Gradient echo with a flip angle of 300</td>
</tr>
<tr>
<td>c. Tissue heating*</td>
<td>c. Fast Spin echo with a flip angle of 900</td>
</tr>
<tr>
<td>d. Magnetophosphenes</td>
<td>d. Inversion recovery pulse sequence</td>
</tr>
</tbody>
</table>

Sample 3
INSTRUMENTATION

<table>
<thead>
<tr>
<th>Knowledge Based</th>
<th>Competency Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>What method is used to reduce scan time?</td>
<td>Mr. Jacques is a 65 year old with a history of chronic obstructive pulmonary disease and is having an abdominal scan. What adjustments would the MR technologist make to expedite the breath hold scans?</td>
</tr>
<tr>
<td>a. Decrease frequency matrix</td>
<td>a. Decrease frequency matrix</td>
</tr>
<tr>
<td>b. Decrease phase matrix*</td>
<td>b. Decrease phase matrix</td>
</tr>
<tr>
<td>c. Increase frequency matrix</td>
<td>c. Increase FOV</td>
</tr>
<tr>
<td>d. Increase phase matrix</td>
<td>d. Decrease FOV</td>
</tr>
</tbody>
</table>
Sample 4

INSTRUMENTATION

<table>
<thead>
<tr>
<th>Knowledge Based</th>
<th>Competency Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>What imaging option was added to the pulse sequence for image B?</td>
<td>What imaging option was added to the pulse sequence for image B to determine the presence or absence of a pathological process in the wrist and which arrow indicates the area in question?</td>
</tr>
<tr>
<td>a. gradient moment nulling</td>
<td>a. gradient moment nulling/3</td>
</tr>
<tr>
<td>b. pre-saturation band</td>
<td>b. pre-saturation band/1</td>
</tr>
<tr>
<td>c. chemical water pre-saturation</td>
<td>c. chemical water pre-saturation/1</td>
</tr>
<tr>
<td>d. chemical fat pre-saturation</td>
<td>d. chemical fat pre-saturation/2</td>
</tr>
</tbody>
</table>

Image A

![Image A](image1.png)

Image B

![Image B](image2.png)

Nuclear Medicine

Sample 1

PATIENT CARE
Knowledge Based
What are the symptoms of a seizure?
- Muscle rigidity, rapid respirations and jerky body movements *
- Pale, cold clammy skin and dizziness
- Slurred speech, noisy respirations and tachycardia
- Sneezing, tightness of chest and apprehensiveness

Competency Based
The technologist is performing a bone scan on a patient. Half way through the procedure the patient has a seizure. How should the technologist proceed?
- Stop the scan and call for help
- a. Elevate the patient’s legs and lower their head
- b. Initiate CPR
- c. Place the patient in the recovery position
- d. Prevent the patient from injuring himself *

Sample 2
PATIENT CARE

Knowledge Based
What is the purpose of performing the energy resolution on a well counter?
- Evaluate how much peak broadening occurs in a detector *
- Evaluates the statistically variability of the detector
- Determine a detector’s ability to detect radiation events
- Determines the ability to discriminate between noise and statistically valid events

Competency Based
The technologist performed an energy resolution on the well counter using 137Cs. If the full width at half maximum is determined to be 49 keV, what is the % energy resolution?
- a. 0.93%
- b. 7.4% *
- c. 13.4%
- d. 15.6%

Sample 3
CLINICAL PROCEDURES

Knowledge Based
What corrections can be incorporated into iterative reconstruction techniques that filtered back projection cannot incorporate?
- Attenuation correction
- Minimizing motion artifacts
- Non-uniformity corrections
- Noise control *

Competency Based
The images in Figure 1 were generated using iterative reconstruction only, with 5 iterations and 3 subsets. What should the technologist do to improve the image quality?
- a. Reconstruct the images using 10 iterations
- b. Repeat the processing using a higher cut-off frequency
- c. Apply a Butterworth post-filter *
- d. Submit images to physician for reporting
Radiation Therapy

Sample 1

PATIENT CARE

Knowledge Based
What would be the standard breast treatment after surgery for grade 1 ductal carcinoma T1b, N0, M0, ER+/PR+/Her2/neu-?

- a. chemotherapy and radiation therapy
- b. radiation therapy and hormone therapy*
- c. chemotherapy and hormone therapy
- d. radiation therapy alone

Competency Based
Mrs. Smith presents with a 0.9 cm tumour located in the upper, outer quadrant of her left breast. Her sentinel node biopsy and Her-2/neu protein level were negative, however estrogen and progesterone hormone levels were positive. Pathology indicated the tumour cells were well differential. The most common side effects include:

- a. erythema, hot flashes, hair loss
- b. hot flashes, erythema, fatigue*
- c. nausea, hair loss, moist desquamation
- d. moist desquamation, fatigue, nausea

Sample 2

PATIENT CARE

Knowledge Based
What medication is used for intracranial pressure (ICP)?

- a. Decadron (dexamethasone) *
- b. Ativan (lorazepam)
- c. Tylenol (acetaminophen)
- d. Zofran (ondansetron)

Competency Based
A patient has multiple brain metastasis and is undergoing whole brain radiation therapy treatment. While on treatment he begins to experience nausea. What medication should be prescribed for the patient?

- a. Decadron (dexamethasone) *
- b. Ativan (lorazepam)
- c. Tylenol (acetaminophen)
- d. Zofran (ondansetron)

Sample 3

PATIENT CARE

Knowledge Based
What are the primary functions of the cerebellum?

- a. speech and recognition
- b. balance and movement *
- c. vision and fine motor skills
- d. decision making and emotions

Competency Based
A patient has a CT scan of the head. What symptoms would you expect this patient to present with in clinic?

- a. slurred speech and difficulty walking
- b. difficulty standing and raising arms above head *
- c. blurred vision and difficulty holding a pencil
- d. unable to make a decision and teary
Sample 4
PLANNING & TREATMENT

Knowledge Based

What is the most common fractionation and treatment technique for T1b, N0, M0 laryngeal cancer?

- a. 63Gy/35 fractions IMRT
- b. 72Gy/32 fractions IMRT
- c. 74Gy/37 fractions conformal
- d. 66Gy/33 fractions conformal *

Competency Based

A patient is diagnosed with cancer of the larynx involving the anterior commissure and both vocal cords. What is the most common fractionation and treatment technique for this type of cancer?

- a. 63Gy/35 fractions IMRT
- b. 72Gy/32 fractions IMRT
- c. 74Gy/37 fractions conformal
- d. 66Gy/33 fractions conformal *

Sample 5
PLANNING & TREATMENT

Knowledge Based

What nodes would be included when treating a preoperative rectum patient with radiation therapy?

- a. external iliac and inguinal
- b. external iliac and obturator
- c. internal iliac and inguinal
- e. internal iliac and obturator *

Competency Based

A patient is having neo-adjuvant treatment for rectal carcinoma. He is receiving a radiation therapy dose of 25Gy in 5 fractions. What nodes would be included in the treatment field?

- d. external iliac and inguinal
- e. external iliac and obturator
- f. internal iliac and inguinal
- g. internal iliac and obturator *

Radiological Technology
Sample 1

PATIENT CARE

Knowledge Based

What type of shock might a patient suffer if they are allergic to non-ionic iodinated contrast media?

- a. hypovolemic
- b. anaphylactic *
- c. cardiogenic

Competency Based

Mr. Jones is having an enhanced CT scan of his chest. Shortly after being administered the contrast via IV, he complains of itchiness and some difficulty breathing. What would be the technologist’s INITIAL reaction?

- a. Stop the scan and call for help *
Sample 2

POSITIONING

Knowledge Based
What structures are to be aligned to best visualize the odontoid (dens) on an open mouth image of the cervical spine?

a. mandibular body and EAM
b. nasion and EAM
c. upper occlusal plane and base of the skull*
d. lower occlusal plane and base of the skull

Competency Based
What corrective action should the technologist take to improve this image?

a. Elevate the chin *
b. Depress the chin
c. Angle the CR 10 degrees caudad
d. No corrective action is necessary.

Sample 3

INSTRUMENTATION

Knowledge Based
What affect does decreasing mAs have on image quality?

a. Reduces image noise
b. Increases image noise*
c. Reduces image contrast
d. Increases image contrast

Competency Based
Using a CR unit, the technologist acquired an image of the wrist using 1 mAs and 65 kV. It is determined the image is not diagnostic due to increased image noise. What corrective action would the technologist take when repeating this image?

a. Decrease mAs
b. Increase mAs*
c. Decrease kV
d. Increase kV

Sample 4

PATIENT CARE

Knowledge Based
What type of precautions are required for tuberculosis (TB)?

a. Contact
b. Droplet
c. Blood-Borne
d. Airborne *

Competency Based
Mr. Lee, 77, requires a mobile chest exam to rule out tuberculosis (TB). What should the technologist do before entering Mr. Lee’s room?

a. Wash hands and put on a surgical mask
b. Put on gloves and a N95 mask
c. Wash hands and put on a N95 mask *
d. Put on gloves and a surgical mask
Sample 5

POSITIONING

<table>
<thead>
<tr>
<th>Knowledge Based</th>
<th>Competency Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where is the centering for an AP projection of the pelvis?</td>
<td>Refer to Image 1. What positioning error has occurred on this AP pelvis image?</td>
</tr>
<tr>
<td>a. 5 cm (2 inches) inferior to the ASIS *</td>
<td>a. Patient’s right leg is externally rotated</td>
</tr>
<tr>
<td>b. At the symphysis pubis</td>
<td>b. Patient’s left leg is externally rotated</td>
</tr>
<tr>
<td>c. 5 cm (2 inches) superior to the ASIS</td>
<td>c. Patient is rotated to the left</td>
</tr>
<tr>
<td>d. At the ASIS</td>
<td>d. Patient is rotated to the right *</td>
</tr>
</tbody>
</table>

Sample 6

INSTRUMENTATION

<table>
<thead>
<tr>
<th>Knowledge Based</th>
<th>Competency Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>What parameter determines the number of shades of gray displayed in a CT image?</td>
<td>Mrs. Kennedy, 57, requires a CT scan of her abdomen and pelvis. What parameter will provide optimal image contrast to demonstrate bony detail in Mrs. Kennedy’s pelvis?</td>
</tr>
<tr>
<td>a. Window level</td>
<td>a. Wide window width *</td>
</tr>
<tr>
<td>b. Slice thickness</td>
<td>b. High window level</td>
</tr>
<tr>
<td>c. Window width *</td>
<td>c. Narrow window width</td>
</tr>
<tr>
<td>d. Matrix size</td>
<td>d. Low window level</td>
</tr>
</tbody>
</table>

20. Chapter 4: Exam development and scoring

Subject matter experts

Developing a CAMRT certification exam requires many subject matter experts. Exam development committees are established for each discipline. The members of the committees come from all areas of Canada and have varied years of experience in both teaching and practice.

This allows for transparency, fairness and validity of the exam, which tests what is expected for practice and the needs of the employer.

21. Exam development committees

Click on each of the groups to find out more about their role in exam development.

Item writers
This group of six subject matter experts is tasked with writing exam items. They develop items using the CAMRT competency profile and exam blueprint as a guide to ensure they are asking questions that are related to the practice. They reference their questions to the textbooks that are found on the published recommended textbook list on the CAMRT website.

Exam validation committee

The second group is the exam validation committee. This group has 8 to 10 subject matter experts who see the whole exam. They are responsible for reviewing and making minor revisions. They also set the passing score for the exam. The experts on this group are different from those who wrote the items.

22. Exam development committees

Exam development committees are facilitated by experts in the development of a competency-based exam. These experts:

- provide guidance in testing methods
- ensure testing principles are applied in the development of the exam
- perform statistical analysis to ensure validity and fairness of the exam

23. Scoring the exam

As mentioned earlier, setting the passing score on a CAMRT certification exam is done by the members of the exam validation committee. Determining a passing score is essential to ensure the minimum competency of candidates' safe, ethical and effective practice.

The CAMRT competency-based exam tests the performance expected in the workplace based on the pre-determined performance outcomes identified in the CAMRT competency profiles.

24. The Angoff method

The method used to set the passing score is called the Angoff method. Research shows that it is a widely accepted, fair and valid method for establishing a passing score for a competency-based type exam.

The Angoff method is based on the concept of the minimally competent candidate. How is minimally competent defined?

25. Level of competence

To better understand the concept of minimally competent, think of people you work with every day. Some are superstars and perform well above the level of the majority of workers. Others perform poorly and should not be practicing.
Somewhere between these two extremes are those that perform at a level of competence that is acceptable for safe and effective practice.

26. The passing score

Each member of the exam validation committee rates each item on the exam independently, from the perspective of the minimally competent candidate.

For each exam question, the experts answer the question “What percentage of minimally competent, entry level technologists would be expected to answer this item correctly?”

These ratings are averaged to determine the passing score. It is however important to note that besides the ratings, other factors are taken into consideration when setting the passing score.

Circumstances such as the introduction of new technology and practices can impact the performance of a minimally competent candidate.

27. Performance levels

This method of setting a passing score is in direct reference to the competence required of the candidate. The Angoff Method has proven to be the most fair and valid method to establish a passing score on the competency-based CAMRT certification exams. Read more about the Angoff Method in the exam preparation guide for your discipline.

28. Chapter 5: Good to know

This chapter describes the format of the multiple choice questions used on the certification exam and provides tips on answering a multiple choice exam.

29. Multiple choice items

The CAMRT exams consist of independent questions and case studies, all of which are multiple choice questions.

30. Stems and choices

A multiple-choice question is a form of testing in which respondents are asked to select the best possible answer out of a number of choices.

Multiple choice items consist of two parts: a stem and choices. Click on each of the arrows to find out more.

Stem - The stem is the beginning part of the item that presents a problem to be solved. It may ask a question or provide a statement that needs to be completed. Items may include images or graphs.

Choices - The choices are the possible answers that the examinee can choose from. All CAMRT exam questions have four choices: one of them is the correct answer and the other three are incorrect answers, called distractors.
31. Case studies

A case study is a practice scenario which exam candidates are expected to analyze and respond to, guided by a number of case-related multiple choice questions. The case study requires critical thinking and problem solving skills as related to the practice scenario described.

Where a case study is presented, it will be clearly indicated which questions refer to that case study.

It is important to re-read the stem and all questions within the case to answer correctly, as the answer to one question may impact the answer to another question.

Examples of case studies are shown in the CAMRT practice exams (100 sample exam questions for each discipline).

32. Preparing for the exam

When preparing for the exam, it is important to read and review the:

- competency profile for your discipline
- prep guide with information on the certification exam process and study resources
- exam prep courses and practice exams with 100 sample exam questions for each discipline
- exam blueprint for your discipline. The blueprint provides information on:
 - competency category as per competency profile and question weighting per category
 - item presentation: percentage of independent items and case study items
- acronyms and abbreviations used in the exam as described in the glossary included in the prep guide
- readiness self-assessment tools that give an overview of the practice of each discipline in Canada
- recommended textbooks

33. Tips and strategies

Click on each of the headings to the left to see some strategies to help you prepare for your exam.

Study schedule

Set a realistic study schedule and begin studying early. Spread your study sessions over time and at the beginning of each session, review the material learned previously.

Learning tools

Make good use of any learning tools made available to you: practice exams and exam prep courses. Click on your discipline below, to view the study resources available in the prep guide.

- Magnetic Resonance
- Nuclear Medicine
• Radiation Therapy
• Radiological Technology

Apply knowledge
Do not simply memorize facts. Apply your knowledge to practice in the workplace.

Collaborate
If you are taking exam preparation courses, discuss with instructors and fellow students. If possible, seek out help from a technologist with clinical experience in Canada.

34. Writing the exam
Click on the markers below to find out about some things that are good to know going into your exam.

Acronyms - Acronyms or abbreviations used in the exam are described in the glossary included in the exam booklet. http://www.camrt.ca/certification/graduates-of-canadian-accredited-programs/exam-preparation-resources/

Images - Some questions require the use of images. There will be instructions for use of images when answering exam items.

Language - Efforts are made to ensure the questions are written in plain language.

Answers - There is only one correct answer for each multiple choice question.

Marking - One point is awarded for each correct answer. Do not leave any unanswered questions. If you are not certain, select your best choice.

Time - The exam includes 185 items and is written in 4 (four) hours. A clock will be available to you; be aware of the time.

35. Writing a competency-based exam
You have completed the Writing a Competency-Based Exam module.